狄拉克在科學貢獻上做出的成就分別是什麼 他的學術研究的的成果有哪些

本文已影響2.11W人 

主要成就

科學貢獻

狄拉克因創立有效的、新型式的原子理論而獲得1933年的諾貝爾物理學獎。

狄拉克發展了量子力學,提出了著名的狄拉克方程,並且從理論上預言了正電子的存在。

狄拉克原來從事相對論動力學的研究,自從1925年海森伯訪問劍橋大學以後,狄拉克深受影響,把精力轉向量子力學的研究。

狄拉克在科學貢獻上做出的成就分別是什麼 他的學術研究的的成果有哪些

1928年他把相對論引進了量子力學,建立了相對論形式的薛定諤方程,也就是著名的狄拉克方程。這一方程具有兩個特點:一是滿足相對論的所有要求,適用於運動速度無論多快電子;二是它能自動地導出電子有自旋的結論。這一方程的解很特別,既包括正能態,也包括負能態。狄拉克由此做出了存在正電子的預言,認爲正電子是電子的一個鏡像,它們具有嚴格相同的質量,但是電荷符號相反。狄拉克根據這個圖象,還預料存在着一個電子和一個正電子互相湮滅放出光子的過程;相反,這個過程的逆過程,就是一個光子湮滅產生出一個電子和一個正電子的過程也是可能存在的。1932年,美國物理學家安德森(1923-)在研究宇宙射線簇射中高能電子徑跡的時候,奇怪地發現強磁場中有一半電子向一個方向偏轉,另一半向相反方向偏轉,經過仔細辨認,這就是狄拉克預言的正電子。後來很快又發現了γ射線產生電子對,正、負電子碰撞“湮滅”成光子等現象,全面印證了狄拉克預言的正確性。狄拉克的工作,開創了反粒子和反物質的理論和實驗研究。

狄拉克是量子輻射理論的創始人,曾經和費米各自獨立發現了費米-狄拉克統計法。狄拉克還在美國佛羅里達州立大學發表過大量有關宇宙學方面的論文,推動宇宙學研究的發展。特別值得一提的是,狄拉克早在本世紀三十年代,就從理論上提出可能存在磁單極的預言。近代物理學來有關磁單極的理論研究和實驗探測取得了迅速發展。1982年國外已有報道,宣稱有人發現了磁單極存在的證據。當然,假如真能從實驗上證實磁單極存在,一定會引起物理理論的深刻變化。

總結起來,狄拉克對物理學的主要貢獻是:給出描述相對論性費米粒子的量子力學方程(狄拉克方程),給出反粒子解;預言磁單極;費米—狄拉克統計。另外在量子場論尤其是量子電動力學方面也作出了奠基性的工作。在引力論和引力量子化方面也有傑出的工作。

電動力學

到了1927年,由於許多開創性的工作,狄拉克已成了科學界中知名的人物。證據就是他受到邀請參加了第五屆索爾維會議(電子與光子)。同年,狄拉克被選爲聖約翰學院院士,並在1929年被任命爲數學物理的高級講師。 此時,狄拉克正着手電子的相對論性量子理論。當時雖然已經有了克萊因-戈爾登方程,但狄拉克認爲問題並未被解決。這個方程可能給出負值的概率,量子力學對概率的詮釋無法解釋這個問題。

就在1928年狄拉克提出了描述電子的相對論性方程——狄拉克方程,並獨立於沃爾夫岡·泡利的工作發現了描述自旋的2x2矩陣。亞伯拉罕·派斯曾引述狄拉克如此說道:“我相信我獨立得到了它(自旋矩陣),泡利也許也是獨立於我得到這個結果。” 然而狄拉克方程與克萊因-戈登方程有相同的問題,存在無法解釋的負能量解。這促使狄拉克預測電子的反粒子——正電子的存在。他詮釋正電子來自於填滿電子的狄拉克之海。正電子於1932年由卡爾·安德森在宇宙射線中觀察到而證實。狄拉克方程同時能夠解釋自旋是作爲一種相對論性的現象。

狄拉克在科學貢獻上做出的成就分別是什麼 他的學術研究的的成果有哪些 第2張

由於恩里科·費米在1934年的β衰變理論牽涉到粒子的毀滅與創造,使狄拉克方程詮釋作任意自旋ħ/2之點粒子的場方程,其中場量子化的過程包含了反交換律。因此在1934年,海森堡將狄拉克方程重新詮釋作所有基本粒子(夸克與輕子)的場方程——狄拉克場方程。在理論物理中,這個場方程處於與麥克斯韋方程、楊-米爾斯規範理論、愛因斯坦場方程同等核心的地位。狄拉克被視作量子電動力學的奠基者,也是第一個使用量子電動力學這個名詞的人。

另外在1930年代早期,他也提出了真空極化的概念。對於下一個世代的理論學者施溫格、費曼、朝永振一郎、戴森等人而言,這個工作是量子電動力學發展的關鍵。

1930年狄拉克出版了他的量子力學著作著作《量子力學原理》,這是物理史上重要的里程碑,至今仍是量子力學的經典教材。在這本書中,狄拉克將海森堡在矩陣力學以及薛定諤在波動力學的工作整合成一個數學體系,當中連結了可觀測量與希爾伯特空間中作用子的關係。書中也介紹了量子力學中廣泛應用的狄拉克δ函數。延續狄拉克在1939年的文章,1939年他在此書第三版中加入了他的數學符號系統——狄拉克符號。直到今天,狄拉克符號仍然是最廣泛使用的一套量子力學符號系統。

1932年狄拉克接替約瑟夫·拉莫爾擔任劍橋大學盧卡斯數學教授。1933年狄拉克與薛定諤共同獲得諾貝爾物理獎。他卻對盧瑟福說,他不想出名,他想拒絕這個榮譽。盧瑟福對他說:“如果你這樣做,你會更出名,人家更要來麻煩你。” 1933年12月12日,狄拉克在斯德哥爾摩發表了諾貝爾獎得獎演說,題目爲“電子與正電子的理論”。

磁單極

1931年在一篇“量子化電磁場中的奇點”的文章中,狄拉克探討了磁單極這個想法。1933年,延續了其1931年的論文,狄拉克證明了單一磁單極的存在就足以解釋電荷的量子化。在1975年、1982年以及2009年都有研究結果指出磁單極可能存在。但到目前爲止,仍沒有磁單極存在的直接證據。即使如此,某些大統一理論仍包含磁單極,用於解釋宇宙結構的形成。狄拉克的磁單極是第一次將拓樸學的概念用於處理物理問題。

大數假說

在1937年,狄拉克提出了大數假說。他比較了兩個不帶量綱的量值:基本作用力(在此爲引力與電磁力)的比值與宇宙年齡的尺度,發現兩者皆落在約39個數量級。狄拉克猜測這可能並非巧合,兩者或許存在某種關聯性。參考了愛德華·亞瑟·米爾恩的理論,允許引力常數隨時間改變。基於這些假設,他設計了一個自己的宇宙學的模型。

學術研究

創立量子力學

1925年開始研究由海森伯等人創立的量子力學,1926年發表題爲《量子力學》的論文,獲劍橋大學物理學博士學位,應邀任聖約翰學院研究員。 天才有兩種。一種是普通的天才,他們的成就其他人也可以做到,只要他足夠的努力並且有一點好運。另一種是超常的天才(數學家Mark Kac稱他們爲“魔術師”)。他們有着驚人的、不遵常理的洞察力,很難有其他人能達到那一種智慧。愛因斯坦就是這樣一類天才。1984年辭世的保羅·狄拉克也是一位超常的天才,他的方程預示了反物質的存在,他可以說是繼牛頓之後英國最偉大的理論物理學家。 狄拉克在23歲時成爲量子力學的創始人之一。該理論是在二十世紀二三十年代發展起來的,提出了很多看起來很古怪的論斷,其中包括世界是不可能被完全瞭解的基本事實。但是當他的同事還在被方程的哲學含義而困擾時,狄拉克認爲語言是危險的,而只注重數學上的價值。對他而言,方程是美麗的。隨着年齡的增長,他愈發確認美是通往真理的嚮導。他認爲基礎物理是可以從優雅的數學中拾取的,這一觀點現已滲入到整個探索自然的領域。

狄拉克在科學貢獻上做出的成就分別是什麼 他的學術研究的的成果有哪些 第3張

物理之美的追尋

量子電動力學在作高階微擾計算上,得到了某些無窮大的結果。這在物理系統中是不合理的。因此一種叫作重整化的計算技巧被髮展出來作爲權宜之計,然而對此狄拉克無法接受這種作法。1975年的一場演講中,他發表了這樣的看法:

“我必須說我對於這樣情況相當不滿意。因爲這樣一個‘好的理論’以一種隨意的方法忽視了來自於方程的無窮髮散。這不是明智的數學。明智的數學可以忽略一個極小的值,但不能因一個值爲無窮大而捨棄它。”

拒絕接受重整化使他在研究上漸漸遠離了主流。

他從他寫下的哈密頓形式出發,試圖讓量子電動力學建立在“合邏輯的基礎”上。他找到一種更新的方法來計算異常磁偶矩,並且以海森堡繪景重新推導了蘭姆位移。但儘管付出巨大的努力,狄拉克終其一生仍未能發展出滿意的理論。

1950年代晚期,狄拉克將它發展出來的哈密頓方法應用到愛因斯坦的廣義相對論。這當中牽涉到引力場量子化的問題。

狄拉克在科學貢獻上做出的成就分別是什麼 他的學術研究的的成果有哪些 第4張

爲了與他的女兒瑪麗住得近一點,狄拉克在1969年辭去劍橋大學的職務並接受佛羅里達州立大學提供的教職。在最後的十四年裏,狄拉克大部分的時間都在邁阿密大學與佛羅里達州立大學裏度過。

1982年,狄拉克的健康開始惡化。在1984年10月20日,狄拉克於塔拉哈西因病去世,並依照其家人的意願將遺體埋在當地墓園。

相關內容

熱門精選